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Discreteness and quasiresonances in weak turbulence of capillary waves
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A numerical study is presented which deals with the kinematics of quasiresonant energy transfer in a system
of capillary waves with a discrete wave number space in a periodic box. For a given set of initially excited
modes and a given level of resonance broadening, the modes of the system are partitioned into two classes, one
active, the other forbidden. For very weak nonlinearity the active modes are very sparse. It is possible that this
sparsity explains discrepancies between the values of the Kolmogorov constant measured in numerical simu-
lations of weakly turbulent cascades and the theoretical values obtained from the continuum theory. There is a
critical level of nonlinearity below which the set of active modes has finite radius in wave number space. In
this regime, an energy cascade to dissipative scales may not be possible and the usual Kolmogorov spectrum
predicted by the continuum theory not realized.
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[. INTRODUCTION In this paper we present a simple kinematic model of
energy transfer in a nonlinear wave system with a discrete
Weak turbulence theofVTT) is concerned with the sta- wave vector space. Our picture is based on the assumption
tistical description of ensembles of weakly interacting dis-that for a given level of nonlinearity, the system exhibits a
persive waves usually subjected to large scale forcing andharacteristic degree of nonlinear resonance broadening
small scale dissipation. Statistically steady solutions can bwhich effectively thickens the resonance manifolds enough
exactly found which carry a finite flux of energy from the to get around Kartashova's theorem. For very low levels of
forcing scale to the dissipation scdlH. Energy transfer be- nonlinearity, this thickening is no longer sufficient to main-
tween scales is associated with the resonant interaction ¢#in the integrity of the resonance manifolds and the effects
groups of waves whose wave vectors all lie on certain resoef discreteness begin to play a role. The model gives a quali-
nant manifolds which thread the wave vector space of théative explanation for the “wedding cake” spectrum. In ad-
system. The resulting steady state energy distributions ardition, we find that there is a critical level of nonlinearity
described by the Kolmogorov-Zakhar@Z) spectra which above which the “wedding cake” spectrum ceases to exist
have been observed in both experimehgdland numerical and flux spectra carrying energy to small scales become pos-
[3] studies. sible. Our model suggests that above this critical level of
WTT is usually built under the assumption that the systenmonlinearity, there is a regime where the active modes re-
under study is infinite in extent, statistically homogeneousmnain very sparse and arranged in such a way that energy
and isotropic. Experimental investigations of wave phenomiransfer in wave vector space is very anisotropic. We conjec-
ena, however, usually deal with bounded systems and nuure that this “spectral intermittency” might manifest itself
merical simulations usually assume periodic boundary conby modifying the value of the Kolmogorov constant associ-
ditions. In both these cases, the wave vector space of thated with the angle-averaged energy spectrum. This hypoth-
system is a discrete lattice rather than a continuum. This is asis seems to be supported by the fact that PZ measured a
potentially crucial distinction—particularly in view of value for the Kolmogorov constamb] which was signifi-
Kartashova’'s proof4] that the resonant manifolds of sys- cantly lower than the theoretical value even in the regime
tems of waves with th&~ %2 dispersion law, of which deep where thek™ "4 spectrum was well established.
water capillary waves provide an example, are completely
destroyed by any discretisation of the wave vectors. In nu- || KINEMATIC MODEL OF QUASI-RESONANCES
merical simulations of capillary wave turbulence, Pushkarev
and ZakharoV5] (P2) have reported very pronounced devia-  Consider a system of capillary waves. The dispersion re-
tions from thek™ " KZ spectrum predicted by WWT. At lation for such waves is of the form
very low levels of nonlinearity, they found that their system
failed to produce a cascade and all the energy accumulated in o =o(lk|)= Jok?, (1)

a collection of relatively lonk modes. They called the re- h is th fici £ surf ion. Th i
sulting distribution a “wedding cake” spectrum and sug-W ereo is the coefficient of surface tension. The nonlinear

gested that the anomalous behavior was due to the destrui eractions in this_ system are _predominantly_three wave so
tion of the resonant manifolds caused by discreteness. Th e resonant manifolds are defined by the pair of equations

showed that the set of active modes in the discrete system is

a small subset of the total number of possible modes. wi, T oy, ~ 0 =0, K1tk —ks=0, )
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FIG. 1. Growth of the active region ok space for &

=0.201746. The successive generations have been grouped to-
gether. The four plots show generations 1-5, 6-10,11-15, and 16-19,
respectively. of nonlinearity which is usually thought of in terms of the
small parametee used to derive the weak turbulence pertur-
bation expansion. For our purposes we do not need to know
the details of this relationship. It is sufficient to remember
that for weak nonlinearity$ is small andS— 0 in the linear

FIG. 2. Some cascades dying out.

with the + sign corresponding to confluences; 2—3, and
the — sign corresponding to decays;y12+ 3. If the system
is placed in a square box of sidethen the values ok are
guantized k=Ak(n,m). Heren,me Z andAk=2=/L. As  limit, e—0.
was shown by Kartasho\d], for integer valued vectors, the We propose the following kinematic model to study the
system of equation&) has no solutions. The resonance con-effects of discreteness and nonlinear broadening on the trans-
ditions for nonlinear interactions cannot be satisfied in thider of energy in the system.
case. The resolution of this apparent paradox lies in the fact (i) By rescaling the first of the quasiresonance conditions
that the dispersion relatiofl) only holds exactly for linear (4) by a factor of\/a(Ak)*? we can write
waves. Once the nonlinear terms in the equations of motion
are taken into account, the frequeney, acquires a weak
dependence on the wave amplitudee, e.g., Ref6] Chap.
14) This leads to a nonlinear correction to the equations dewhere 6’ denotes the rescaling of the physicaland the
scribing the resonance manifolds vectorsky,k,,kge 72,

(i) We put some energy into a small collection of initial
modes. We denote this initial collection of excited modes by
Sp. Since we usually force at large scales, the modeS,in

Such interactions are called quasiresonances. The real partafe clustered around the origin knspace.

>, gives rise to nonlinear frequency shifts and the imaginary (iii) We now examine which modes can interact at the
part gives rise to resonance broadening. We cannot computgven level of nonlinear broadening. We construct a new set
2, easily since it is functionally dependent on the entire specef modes as follows:

trum. However we know that it must take a continuous range
of values which we characterize by introducing a statistical
characteristic level of resonance broadening, denoted Hy
|%|< &, then the given combination of wave vectors can (iv) Define S=S,US;. Provided thats is large enough,
transfer energy. Therefore, as suggested in [Bf.we can  S; will be nonempty andS will constitute larger set of pos-
model quasiresonant interactions by writing the resonanceible active modes.

conditions as (v) We can now iterate this procedure to generate a series
of cascade generatiod, S,, ..., Sy. Their union gives

us a map of the set of active modes in the system.

This model is purely kinematic. It does not say anything
We effectively thicken the resonance manifolds by anabout how energy might be exchanged dynamically among
amount of the order of the nonlinear resonance broadeninghe active modes. We shall see however that the kinematics
The characteristic level of broadening is related to the leveblone allows one to make some interesting observations

k3= k3*—k34< 8", kixk,—ks=0. (5)

wkliwkz—wkszz, klikz_kgzo. (3)

S]_:{k:kl+ k2:klik2680’wkl+ wkz—wk< 5}

|wk1i wkz—wk3|<5, kli k2_k3:0. (4)
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about what happens at low levels of nonlinearity wheis  just stays in the initial circle around 0. A&is increased, it is
small and the weak turbulence begins to feel the effects oflear that there exists,,;,>0, above which it becomes pos-

discreteness. sible to satisfy the quasiresonance conditigBs At this
value of §, cascades of energy to highebecome possible.
I1l. VERY WEAKLY NONLINEAR CASCADES Figure 2 shows the maximgm modulus of the wave vectors
in each successive generation of the cascades for a range of
A. Behavior of the model for small & values ofs.

We take the initial set of excited modes to be the modes For small values ofs, the cascade proceeds for only a
contained within a circle of radius, about the origin. While ~finite number of steps before dying out. Figurea)3shows
this would be considered to be isotropic forcing in the con-the total number of steps in the cascade as a functighfof
tinuum case, we must bear in mind that the discreteness dfitial forcing radius,Ko=4.5. The number of steps before
the lattice is felt very strongly wheK, is small so it does extinction increases withs until 6= J.;=0.2017462 is
not really make sense to talk about isotropic forcing in thisreached whereupon the cascade suddenly escapes to infinity.
case. Some maps of active modes are shown in Fig. 1. Thedds also interesting to observe the quite extended plateaux in
plots are for §=0.201746 when the cascades are quiteFig. 3, particularly the range 0.0¥55<0.018, where the
sparse K, was taken, in this case, to be 4.5 which corre-behavior of the model is quite insensitive to variations in the
sponds to an initial set of 69 excited modes. nonlinearity level.

6=0 corresponds to the linear picture where there is no
exchange of energy between modes. In this case the enerc** 2qg
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The values= é.,; appears to correspond to a sharp break-one behind the front, even for relatively low values &f
down of the finite radius confinement. There does not appearhile in the same regime, the front speed is strongly inhib-
to be a sequence of consecutively larger but finite cascadeéi®d. Qualitatively, this may explain the slowdown of energy
generated asi— 6. There is nothing special about the flux and lower Kolmogorov constant observed by Pushkarev
particular value ofd.;; since it depends on the initial modes and zZakharov in numerical experimef.
chosen to start the cascade. Figutb) Zhows the value of
St Obtained for different initial forcing characterized by the IV. DISCUSSION
spectral radius of the forcing,. It was a surprise to find that
Seir=1/K to quite a high accuracy. We do not see an obvi- We believe that the behavior observed in our model pro-

ous reason why this should be so. vides a possible explanation for the anomalous behavior ob-
served by Pushkarev and Zakharov in their numerical simu-
B. Behavior for large & lations. First let us consider what might happen if a

. _numerical experiment is carried out with the characteristic
Figure 4 shows some plots of the angle averaged densityojinearity small enough that the nonlinear resonance

of active modes as a function &ffor different values ofs. broadening is, on average, less thép,. The energy ini-

As one might expect, as approaches which equals the 5y supplied to the system begins to cascade to gt
lattice spacing in our modethe density approaches its con- he cascade dies out due to the above kinematic consider-
tinuum value of 1. The cascade growth rate also approachegjons and the energy remains trapped in a roughly circular
the continuum value for largé. In the continuum, one can region but with a very sparse and anisotropic distribution.
easily show that the ratio of the radii of two successive stepsg,ch trapping of energy and the strongly nonuniform energy
in the cascade should be given Kf¥/ky®=2% Figure 5 istribution on|k| (see Fig. 4 for6=0.2) agrees with PZ’s
shows that this cascade front speed is only beginning to bghservations of the “wedding cake” structure. How this en-
attained ass approaches 1. For intermediate values, the casergy distributes itself to produce the “layers” would require
cade grows much more slowly. It is interesting, howeversome dynamical information which is not present at this
that the density of active modes knspace becomes of order level.
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