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Discreteness and quasiresonances in weak turbulence of capillary waves
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A numerical study is presented which deals with the kinematics of quasiresonant energy transfer in a system
of capillary waves with a discrete wave number space in a periodic box. For a given set of initially excited
modes and a given level of resonance broadening, the modes of the system are partitioned into two classes, one
active, the other forbidden. For very weak nonlinearity the active modes are very sparse. It is possible that this
sparsity explains discrepancies between the values of the Kolmogorov constant measured in numerical simu-
lations of weakly turbulent cascades and the theoretical values obtained from the continuum theory. There is a
critical level of nonlinearity below which the set of active modes has finite radius in wave number space. In
this regime, an energy cascade to dissipative scales may not be possible and the usual Kolmogorov spectrum
predicted by the continuum theory not realized.
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I. INTRODUCTION

Weak turbulence theory~WTT! is concerned with the sta
tistical description of ensembles of weakly interacting d
persive waves usually subjected to large scale forcing
small scale dissipation. Statistically steady solutions can
exactly found which carry a finite flux of energy from th
forcing scale to the dissipation scale@1#. Energy transfer be-
tween scales is associated with the resonant interactio
groups of waves whose wave vectors all lie on certain re
nant manifolds which thread the wave vector space of
system. The resulting steady state energy distributions
described by the Kolmogorov-Zakharov~KZ! spectra which
have been observed in both experimental@2# and numerical
@3# studies.

WTT is usually built under the assumption that the syst
under study is infinite in extent, statistically homogeneo
and isotropic. Experimental investigations of wave pheno
ena, however, usually deal with bounded systems and
merical simulations usually assume periodic boundary c
ditions. In both these cases, the wave vector space of
system is a discrete lattice rather than a continuum. This
potentially crucial distinction—particularly in view o
Kartashova’s proof@4# that the resonant manifolds of sy
tems of waves with thek23/2 dispersion law, of which deep
water capillary waves provide an example, are comple
destroyed by any discretisation of the wave vectors. In
merical simulations of capillary wave turbulence, Pushka
and Zakharov@5# ~PZ! have reported very pronounced devi
tions from thek27/4 KZ spectrum predicted by WWT. A
very low levels of nonlinearity, they found that their syste
failed to produce a cascade and all the energy accumulate
a collection of relatively low-kW modes. They called the re
sulting distribution a ‘‘wedding cake’’ spectrum and su
gested that the anomalous behavior was due to the des
tion of the resonant manifolds caused by discreteness. T
showed that the set of active modes in the discrete syste
a small subset of the total number of possible modes.
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In this paper we present a simple kinematic model
energy transfer in a nonlinear wave system with a discr
wave vector space. Our picture is based on the assump
that for a given level of nonlinearity, the system exhibits
characteristic degree of nonlinear resonance broade
which effectively thickens the resonance manifolds enou
to get around Kartashova’s theorem. For very low levels
nonlinearity, this thickening is no longer sufficient to mai
tain the integrity of the resonance manifolds and the effe
of discreteness begin to play a role. The model gives a qu
tative explanation for the ‘‘wedding cake’’ spectrum. In a
dition, we find that there is a critical level of nonlinearit
above which the ‘‘wedding cake’’ spectrum ceases to ex
and flux spectra carrying energy to small scales become
sible. Our model suggests that above this critical level
nonlinearity, there is a regime where the active modes
main very sparse and arranged in such a way that en
transfer in wave vector space is very anisotropic. We con
ture that this ‘‘spectral intermittency’’ might manifest itse
by modifying the value of the Kolmogorov constant asso
ated with the angle-averaged energy spectrum. This hyp
esis seems to be supported by the fact that PZ measur
value for the Kolmogorov constant@5# which was signifi-
cantly lower than the theoretical value even in the regi
where thek27/4 spectrum was well established.

II. KINEMATIC MODEL OF QUASI-RESONANCES

Consider a system of capillary waves. The dispersion
lation for such waves is of the form

vk[v~ uku!5Ask3/2, ~1!

wheres is the coefficient of surface tension. The nonline
interactions in this system are predominantly three wave
the resonant manifolds are defined by the pair of equatio

vk1
6vk2

2vk3
50, k16k22k350, ~2!
©2001 The American Physical Society06-1
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with the1 sign corresponding to confluences, 112°3, and
the2 sign corresponding to decays, 1°213. If the system
is placed in a square box of sideL then the values ofk are
quantized :k5Dk(n,m). Heren,mPZ andDk52p/L. As
was shown by Kartashova@4#, for integer valued vectors, th
system of equations~2! has no solutions. The resonance co
ditions for nonlinear interactions cannot be satisfied in t
case. The resolution of this apparent paradox lies in the
that the dispersion relation~1! only holds exactly for linear
waves. Once the nonlinear terms in the equations of mo
are taken into account, the frequency,v, acquires a weak
dependence on the wave amplitude~see, e.g., Ref.@6# Chap.
14! This leads to a nonlinear correction to the equations
scribing the resonance manifolds

vk1
6vk2

2vk3
5S, k16k22k350. ~3!

Such interactions are called quasiresonances. The real p
S gives rise to nonlinear frequency shifts and the imagin
part gives rise to resonance broadening. We cannot com
S easily since it is functionally dependent on the entire sp
trum. However we know that it must take a continuous ran
of values which we characterize by introducing a statisti
characteristic level of resonance broadening, denoted byd. If
uSu,d, then the given combination of wave vectors c
transfer energy. Therefore, as suggested in Ref.@3#, we can
model quasiresonant interactions by writing the resona
conditions as

uvk1
6vk2

2vk3
u,d, k16k22k350. ~4!

We effectively thicken the resonance manifolds by
amount of the order of the nonlinear resonance broaden
The characteristic level of broadening is related to the le

FIG. 1. Growth of the active region ofk space for d
50.201 746. The successive generations have been groupe
gether. The four plots show generations 1-5, 6-10,11-15, and 16
respectively.
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of nonlinearity which is usually thought of in terms of th
small parametere used to derive the weak turbulence pertu
bation expansion. For our purposes we do not need to kn
the details of this relationship. It is sufficient to rememb
that for weak nonlinearity,d is small andd→0 in the linear
limit, e→0.

We propose the following kinematic model to study t
effects of discreteness and nonlinear broadening on the tr
fer of energy in the system.

~i! By rescaling the first of the quasiresonance conditio
~4! by a factor ofAs(Dk)3/2 we can write

uk1
3/26k2

3/22k3
3/2u,d8, k16k22k350. ~5!

where d8 denotes the rescaling of the physicald and the
vectorsk1 ,k2 ,k3PZ2.

~ii ! We put some energy into a small collection of initi
modes. We denote this initial collection of excited modes
S0. Since we usually force at large scales, the modes inS0

are clustered around the origin inkW space.
~iii ! We now examine which modes can interact at t

given level of nonlinear broadening. We construct a new
of modes as follows:

S15$k5k11k2 :k1 ,k2PS0 ,vk1
1vk2

2vk,d%.

~iv! Define S5S0øS1. Provided thatd is large enough,
S1 will be nonempty andS will constitute larger set of pos
sible active modes.

~v! We can now iterate this procedure to generate a se
of cascade generationsS1 , S2 , . . . ,SN . Their union gives
us a map of the set of active modes in the system.

This model is purely kinematic. It does not say anythi
about how energy might be exchanged dynamically am
the active modes. We shall see however that the kinema
alone allows one to make some interesting observati

to-
9,

FIG. 2. Some cascades dying out.
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FIG. 3. ~a! Total number of
steps as a function ofd for initial
forcing radiusK054.5. After dcrit

50.201 746 the number of steps
infinite. ~b! Plot of dcrit for a vari-
ety of values of the initial forcing
radius K0. The dotted line is the
curve 1/K0.
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about what happens at low levels of nonlinearity whend is
small and the weak turbulence begins to feel the effects
discreteness.

III. VERY WEAKLY NONLINEAR CASCADES

A. Behavior of the model for small d

We take the initial set of excited modes to be the mo
contained within a circle of radiusK0 about the origin. While
this would be considered to be isotropic forcing in the co
tinuum case, we must bear in mind that the discretenes
the lattice is felt very strongly whenK0 is small so it does
not really make sense to talk about isotropic forcing in t
case. Some maps of active modes are shown in Fig. 1. T
plots are for d50.201 746 when the cascades are qu
sparse.K0 was taken, in this case, to be 4.5 which cor
sponds to an initial set of 69 excited modes.

d50 corresponds to the linear picture where there is
exchange of energy between modes. In this case the en

FIG. 4. Radial density of cascades for a range of values ofd.
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just stays in the initial circle around 0. Asd is increased, it is
clear that there existsdmin.0, above which it becomes pos
sible to satisfy the quasiresonance conditions~3!. At this
value ofd, cascades of energy to higherk become possible
Figure 2 shows the maximum modulus of the wave vect
in each successive generation of the cascades for a ran
values ofd.

For small values ofd, the cascade proceeds for only
finite number of steps before dying out. Figure 3~a! shows
the total number of steps in the cascade as a function ofd for
initial forcing radius,K054.5. The number of steps befor
extinction increases withd until d5dcrit50.201 746 2 is
reached whereupon the cascade suddenly escapes to infi
It is also interesting to observe the quite extended plateau
Fig. 3, particularly the range 0.075,d,0.018, where the
behavior of the model is quite insensitive to variations in t
nonlinearity level.

FIG. 5. Growth of cascades for a range of values ofd. The
dotted curve is the continuum upper bound onkmax as a function of
the cascade generation,kmax(n)<K022n/3.
6-3
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The valued5dcrit appears to correspond to a sharp bre
down of the finite radius confinement. There does not app
to be a sequence of consecutively larger but finite casca
generated asd→dcrit . There is nothing special about th
particular value ofdcrit since it depends on the initial mode
chosen to start the cascade. Figure 3~b! shows the value of
dcrit obtained for different initial forcing characterized by th
spectral radius of the forcingK0. It was a surprise to find tha
dcrit'1/K0 to quite a high accuracy. We do not see an ob
ous reason why this should be so.

B. Behavior for large d

Figure 4 shows some plots of the angle averaged den
of active modes as a function ofk for different values ofd.
As one might expect, asd approaches 1~which equals the
lattice spacing in our model! the density approaches its co
tinuum value of 1. The cascade growth rate also approac
the continuum value for larged. In the continuum, one can
easily show that the ratio of the radii of two successive st
in the cascade should be given bykn11

max /kn
max522/3. Figure 5

shows that this cascade front speed is only beginning to
attained asd approaches 1. For intermediate values, the c
cade grows much more slowly. It is interesting, howev
that the density of active modes inkW space becomes of orde
et

e,
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one behind the front, even for relatively low values ofd,
while in the same regime, the front speed is strongly inh
ited. Qualitatively, this may explain the slowdown of ener
flux and lower Kolmogorov constant observed by Pushka
and Zakharov in numerical experiments@5#.

IV. DISCUSSION

We believe that the behavior observed in our model p
vides a possible explanation for the anomalous behavior
served by Pushkarev and Zakharov in their numerical sim
lations. First let us consider what might happen if
numerical experiment is carried out with the characteris
nonlinearity small enough that the nonlinear resona
broadening is, on average, less thandcrit . The energy ini-
tially supplied to the system begins to cascade to highk but
the cascade dies out due to the above kinematic cons
ations and the energy remains trapped in a roughly circ
region but with a very sparse and anisotropic distributio
Such trapping of energy and the strongly nonuniform ene
distribution onuku ~see Fig. 4 ford50.2) agrees with PZ’s
observations of the ‘‘wedding cake’’ structure. How this e
ergy distributes itself to produce the ‘‘layers’’ would requi
some dynamical information which is not present at t
level.
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